3.847 \(\int \frac{(a+b \sec (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=299 \[ \frac{7 a b \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (3 a^2+4 b^2\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{b \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 d \sqrt{\cos (c+d x)}}-\frac{5 a \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(7*a*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[Cos[c + d*x]]*Sqrt[
a + b*Sec[c + d*x]]) + ((3*a^2 + 4*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a
 + b)])/(4*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (5*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*
a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (b*Sqrt[a + b*Sec[c + d*x]]*S
in[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + (5*a*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.02438, antiderivative size = 299, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 14, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.56, Rules used = {4264, 3866, 4102, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{\left (3 a^2+4 b^2\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{b \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{4 d \sqrt{\cos (c+d x)}}+\frac{7 a b \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{5 a \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(7*a*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[Cos[c + d*x]]*Sqrt[
a + b*Sec[c + d*x]]) + ((3*a^2 + 4*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a
 + b)])/(4*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (5*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*
a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) + (b*Sqrt[a + b*Sec[c + d*x]]*S
in[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + (5*a*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[Cos[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3866

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*d*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1))/(f*(m + n - 1)), x] + Dist[d/(m + n - 1),
Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n - 1)*Simp[a*b*(n - 1) + (b^2*(m + n - 2) + a^2*(m + n - 1
))*Csc[e + f*x] + a*b*(2*m + n - 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2,
0] && LtQ[0, m, 2] && LtQ[0, n, 3] && NeQ[m + n - 1, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 4102

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m
 + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(m + n + 1)), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a*C
*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sec ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2} \, dx\\ &=\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{1}{2} \left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{a b}{2}+\left (2 a^2+b^2\right ) \sec (c+d x)+\frac{5}{2} a b \sec ^2(c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{5 a^2 b}{4}+\frac{1}{2} a b^2 \sec (c+d x)+\frac{1}{4} b \left (3 a^2+4 b^2\right ) \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{5 a^2 b}{4}+\frac{1}{2} a b^2 \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{2 b}+\frac{1}{8} \left (\left (3 a^2+4 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}-\frac{1}{8} \left (5 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{8} \left (7 a b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left (\left (3 a^2+4 b^2\right ) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ &=\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}+\frac{\left (7 a b \sqrt{b+a \cos (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (3 a^2+4 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (5 a \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{8 \sqrt{b+a \cos (c+d x)}}\\ &=\frac{\left (3 a^2+4 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}+\frac{\left (7 a b \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (5 a \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{8 \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=\frac{7 a b \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (3 a^2+4 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{4 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{5 a \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{4 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}+\frac{b \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{5 a \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 32.0869, size = 51315, normalized size = 171.62 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.253, size = 1742, normalized size = 5.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x)

[Out]

-1/4/d/((a-b)/(a+b))^(1/2)*(-5*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Ellipt
icE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^3*a^2+5*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^3*a*b+2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)
/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin
(d*x+c)*cos(d*x+c)^3*a^2+2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*a*b-4*EllipticF((
-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*b^2+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^
(1/2))*sin(d*x+c)*cos(d*x+c)^3*a^2+8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*
EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*
x+c)^3*b^2-5*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*a^2+5*cos(d*x+c)^2*sin(d*x+c)*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b+2*cos(d*x+c)^2*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))
^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/
2)*a^2+2*cos(d*x+c)^2*sin(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2)
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b-4*EllipticF((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+
c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)^2*b^2+6*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*
cos(d*x+c)^2*a^2+8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos
(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)^2*b^2+5*((a-b
)/(a+b))^(1/2)*cos(d*x+c)^3*a^2+2*((a-b)/(a+b))^(1/2)*cos(d*x+c)^3*a*b-5*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2+
5*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a*b+2*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*b^2-7*((a-b)/(a+b))^(1/2)*cos(d*x+c)
*a*b-2*b^2*((a-b)/(a+b))^(1/2))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/cos(d*x+c)^(3/2)/sin(d*x+
c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)